Особенности развития математических представлений у детей старшего дошкольного возраста

Педагогика и воспитание » Развитие математических представлений у старших дошкольников посредством информационных технологий » Особенности развития математических представлений у детей старшего дошкольного возраста

Страница 2

Необходимо объяснить детям, что результат количественного счёта не зависит от порядка, в котором считают предметы. При этом важно лишь не пропустить дважды один и тот же предмет. И, наоборот, для порядковых чисел направление счета имеет большое значение. В количественном и порядковом счёте упражняются сначала с помощью предметов, а потом без них.

Ознакомление с порядковым значением числа происходит на основе сопоставление его с количественным значением. Детей подводят к пониманию того, что когда нужно узнать, сколько предметов всего, их считают так: один, два, три, четыре. В результате такого счёта они могут ответить на вопрос «Сколько?»

Таким образом, ознакомление дошкольников старшего возраста с порядковым значением числа является важной ступенькой формирования количественных представлений.

Деление целого на части. Первое знакомство с делением целого на части осуществляется в средней группе. С необходимостью деления множества, а также отдельного предмета на части дети неоднократно сталкиваются в быту, во время игр. Так, им не раз приходилось делить между собой игрушки, сладости, покупать в магазине часть (половину, четверть) хлеба, грядки на участки и т. д.

В старшей группе дети называют части, сравнивая целое и части, понимают, что целое больше каждой своей части, а часть меньше целого.

Таким образом, значение развития математических представлений в жизни человека, в особенности в детские годы, невозможно переоценить: оно готовит его к вступлению в жизнь с учетом самоценности детства. В эти годы закладываются основы интеллекта человека, формируются разнообразные потребности, взгляды и идеалы.

Страницы: 1 2 

Новое в образовании:

Характеристика основных функций процесса обучения
Дидактика выполняет следующие основные функции: 1) познавательную (научно-теоретическую); 2) практическую (конструктивно-техническую). Познавательная функция. Дидактика открывает или только констатирует факты, прямо или косвенно с ней связанные, систематизирует и обобщает их, объясняет эти факты и ...

Опора на принцип наглядности в процессе обучения математики
Процесс обучения опирается на следующие принципы: принцип научности; принцип связи теории с практикой; принцип систематичности и последовательности; принцип доступности; принцип наглядности; принцип сознательности и активности учащихся; принцип прочности; принцип рационального сочетания коллективны ...

Числовые выражения. Числовые равенства и неравенства, их свойства
Любое число уже является числовым выражением. Если А и В -числовые выражения, то А + В, А - В, А • В, А : В также являются числовыми выражениями. Выполнив операции; которые имеют место в числовом выражении, получают значение числового выражения. Существуют выражения, которые не имеют значения. Напр ...

НАВИГАЦИЯ

Copyright © 2025 - All Rights Reserved - www.eduinfluence.ru