Предпосылки развития функциональной содержательно-методической линии в курсе алгебры основной школы

Педагогика и воспитание » Методика изучения алгебраических функций в восьмилетней школе » Предпосылки развития функциональной содержательно-методической линии в курсе алгебры основной школы

Современный школьный курс математики строится на основе содержательно-методических линий. Проблема изучения функциональной содержательно-методической линии в школьном курсе математики широко обсуждается в научной литературе. Различные ее аспекты освещены в работах известных математиков и методистов В. С. Владимирова, Л. С. Понтрягина, А. Н. Тихонова, А. Я. Хинчина, В. Л. Гончарова, Г. В. Дорофеева, Е. С. Канина, Г. М. Карпенко, Ю.М.Колягина и др.

Авторами рассмотрены различные пути решения указанной проблемы. Так, например, разработана методика применения упражнений в процессе обучения математике, предложены критерии по отбору и конструированию упражнений в процессе формирования понятия функции (Г. И. Саранцев); построена система вычислительных упражнений с графическим контролем (В. А. Гуськов); разработана методика формирования и совершенствования графических представлений учащихся (Е. С. Канин); выделены основные этапы формирования начальных функциональных умений учащихся в средней школе, разработана методика повышения уровня сформированности функциональных умений, способствующая укреплению внутрипредметных и межпредметных связей в обучении математике (М. В. Ткачева); предложена методика изучения понятия функции на основе взаимно обратных функций (В. П. Черепков); разработаны некоторые вопросы пропедевтики функциональной зависимости (В. А. Гуськов, М. И. Добровольский, А. И. Жаворонков, Н. Н. Забежанская, А. А. Михеева).

Тем не менее, в соответствующих публикациях неоднократно указывается на низкий уровень сформированности у учащихся функциональных знаний, умений и навыков. Учащиеся поверхностно усваивают понятие функции, ассоциируя его с формулой. Среди причин, этому способствующих, указываются многие факты: отсутствие у школьников интереса к предмету вообще и изучению функций в частности; изучение каждого нового вида функции, свойств функции фактически вне связи с предыдущим; разрыв между вычислительными и функционально-графическими умениями у учащихся.

В условиях реализуемого учителями информационно-объяснительного подхода к обучению понятие функции, свойства функции воспринимаются учащимися формально, не связываются с соответствующими геометрическими образами. Как следствие, учащиеся не могут оперировать изученными понятиями, не могут ответить на достаточно простые вопросы. Между тем правильное и быстрое графическое представление об аналитических объектах и, наоборот, аналитическое задание графических изображений значительно облегчает усвоение многих понятий, развивает математическую интуицию учащихся, является свидетельством развитой математической культуры.

Новое в образовании:

Двуполушарный подход в обучении, как средство развития мышления
Правополушарные люди за лесом не видят отдельных деревьев, а правополушарные – за отдельными деревьями не видят леса. Б. Белый 40 лет назад крупнейший физиолог нашего века И.П.Павлов пришел к выводу, что всех людей можно разделить на два типа – художников и мыслителей. Связано это с одной из особен ...

Диагностика уровня сформированности экологической культуры младших школьников
Цель опытно-экспериментальной работы: экспериментально проверить эффективность использования комплекса дидактических игр направленного на формирование экологической культуры младших школьников. Экспериментальной базой исследования стала Малиновская ОВК «ДУЗ-ОУЗ І-ІІІ ступеней» Малинского района, Жи ...

Диверсификация отечественной системы высшего профессионального образования
Развитие Российского высшего профессионального образования идет с учетом общих направлений Болонского процесса. В результате обсуждений, широко развернутых на конференциях и совещаниях, проведенных Министерством образования Российской Федерации, было принято решение о подготовке к развертыванию Бол ...

НАВИГАЦИЯ

Copyright © 2024 - All Rights Reserved - www.eduinfluence.ru