Различные подходы к определению понятия функции

Страница 1

Обоснование функциональной линии как ведущей для школьного курса математики — одно из крупнейших достижений современной методики. Однако реализация этого положения может быть проведена многими различными путями; многообразие путей вызвано фундаментальностью самого понятия функции.

Для того чтобы составить представление об этом многообразии, сравним две наиболее резко различающиеся методические трактовки этого понятия; первую мы назовем генетической, а вторую — логической.

Генетическая трактовка понятия функции основана на разработке и методическом освоении основных черт, вошедших в понятие функции до середины XIX в. Наиболее существенными понятиями, которые при этой трактовке входят в систему функциональных представлений, служат переменная величина, функциональная зависимость переменных величин, формула (выражающая одну переменную через некоторую комбинацию других переменных), декартова система координат на плоскости.

Генетическое развертывание понятия функции обладает рядом достоинств. В нем подчеркивается «динамический» характер понятия функциональной зависимости, легко выявляется модельный аспект понятия функции относительно изучения явлений природы. Такая трактовка естественно увязывается с остальным содержанием курса алгебры, поскольку большинство функций, используемых в нем, выражаются аналитически или таблично.

Генетическая трактовка понятия функции содержит также черты, которые следует рассматривать как ограничительные. Одним из очень существенных ограничений является то, что переменная при таком подходе всегда неявно (или даже явно) предполагается пробегающей непрерывный ряд числовых значений. Поэтому в значительной степени понятие связывается только с числовыми функциями одного числового аргумента (определенными на числовых промежутках). В обучении приходится, используя и развивая функциональные представления, постоянно выходить за пределы его первоначального описания.

Логическая трактовка понятия функции исходит из положения о том, что строить обучение функциональным представлениям следует на основе методического анализа понятия функции в рамках понятия алгебраической системы. Функция при таком подходе выступает в виде отношения специального вида между двумя множествами, удовлетворяющего условию функциональности. Начальным этапом изучения понятия функции становится вывод его из понятия отношения.

Реализация логического подхода вызывает необходимость иллюстрировать понятие функции при помощи разнообразных средств; язык школьной математики при этом обогащается. Помимо формул и таблиц, здесь находят свое место задание функции стрелками, перечислением пар, использование не только числового, но и геометрического материала; геометрическое преобразование при таком подходе оказывается возможным рассматривать как функцию. Обобщенность возникающего понятия и вытекающие отсюда возможности установления разнообразных связей в обучении математике — основные достоинства такой трактовки.

Однако выработанное на этом пути общее понятие оказывается в дальнейшем связанным главным образом с числовыми функциями одного числового аргумента, т. е. с той областью, в которой оно гораздо проще формируется на генетической основе.

Таким образом, если генетический подход оказывается недостаточным для формирования функции как обобщенного понятия, то логический обнаруживает определенную избыточность. В дальнейшем изучении функциональной линии различия постепенно стираются, поскольку изучается в курсах алгебры и начал анализа не само понятие функции, а в основном конкретно заданные функции и классы функций, их разнообразные приложения в задачах естествознания и общественного производства.

В современном школьном курсе математики в итоге длительных методических поисков в качестве ведущего был принят генетический подход к понятию функции. Одновременно учитывается все ценное, что можно извлечь из логического подхода. Исходя из этого при формировании понятий и представлений, методов и приемов в составе функциональной линии система обучения строится так, чтобы внимание учащихся сосредоточивалось, во-первых, на выделенных и достаточно четко разграниченных представлениях, связанных с функцией, и, во-вторых, на установлении их взаимодействия при развертывании учебного материала. Иными словами, в обучении должна быть выделена система компонентов понятия функции и установлена связь между ними. В эту систему входят такие компоненты:

Страницы: 1 2

Новое в образовании:

Современное рабочее место преподавателя на примере кабинета физики
Пример организации рабочего места преподавателя физики в современной школе - полный комплекс ТСО - это качественно новая модель совокупности средств информационных технологий учебного назначения, сочетающих в себе воедино демонстрационные средства, средства индивидуальной работы учащихся и техничес ...

Воспитание детей в труде
С самого раннего детства ребенок погружался в трудовую атмосферу семьи, становился участником разнообразных дел, втягивался постепенно в систему трудовых обязанностей и отношений. Как только ребенок подрастал, начинал твердо стоять на ногах и понимать речь окружающих, он легко и естественно включал ...

Система работы по абилитации и реабилитации детей с ДЦП
«Синдромом, препятствующим всем формам восстановительного лечения, является церебральная гипотрофия, наблюдающаяся у 70% детей. Недостаточность массы тела и роста ребенка при рождении сохраняется, нередко, и в последующие годы его жизни» (Семенова К.А.) Общие рекомендации: С первого дня интенсивной ...

НАВИГАЦИЯ

Copyright © 2020 - All Rights Reserved - www.eduinfluence.ru