Исследователь К. Ф. Лебединцев утверждал, что на первоначальном этапе познания чисел ведущим выступает восприятие множества («образ числа»). Постоянно сталкиваясь с необходимостью различать две руки, ноги, ребенок овладевает «образом» этого числа и переносит его на другие множества. Так познаются числа: 1, 2, 3, 4. Далее, за пределами этих совокупностей, познание чисел осуществляется на основе счета, который постепенно вытесняет восприятие множеств. Ребенок учится использовать числовой ряд для счета, ориентироваться в последовательности чисел.
Освоение числового ряда, по мнению Н. И. Чуприковой, изучавшей ступени дифференцированного овладения последовательностью чисел, начинается очень рано, с отличения числительных от других слов. Дети 2-х лет в ответ на просьбу «Сосчитай, сколько будет», как правило, называют числительные, но вне какого-либо порядка. В дальнейшем они осваивают последовательность чисел; постепенно увеличивается стабильная часть последовательности; уменьшается количество таких ошибок, как нарушение порядка и пропуск чисел.
При счете дети допускают ошибки, затрудняются в установлении однозначного соответствия между предметами и числами, так как еще не владеют навыками счета.
Существует также теория развития представлений о числе на основе измерения. Основоположником данной идеи был в 1960 году Л. С. Георгиев. По его утверждению мерка является единицей измерения, а полученное число — результатом. Согласно этой теории, представление о числе начинает складываться у ребенка с представления о мере.
Разработка методик развития у детей числовых представлений с позиций идей теории множеств началась в 50-е гг. XX в. В теории множеств Г. Кантора понятие числа (его количественное значение) базируется на равномощности нескольких совокупностей. Из этого следует подход к методике освоения числа как общего неизменного признака ряда равномощных множеств. Это ведет к осмыслению равночисленности групп предметов (равны по количеству, столько же). Используются равномощные множества: 4 игрушки, 4 книги, 4 ребенка. Все эти числа обозначаются цифрой 4, что подводит ребенка 4—5 лет к обобщению групп предметов по числу (всех по 4).
В методике обучения дети сначала осваивают действия с множествами и свойствами предметов: сравнивают, уравнивают по количеству, соотносят, а затем переходят к усвоению чисел.
Множества дошкольники создают или перечислением всех его элементов по одному разу (один, еще один .) или по характеризующему эти элементы общему свойству (все квадратные; все лежат на одной полке).
Освоению детьми чисел посвящена книга Г. Фройденталя «Математика как педагогическая задача».
По мнению Г. Фройденталя, в основе освоения детьми чисел особое место занимает порядковое число, «проговаривание порядка». Натуральное число рассматривается при этом и как характеристика порядка элементов в множестве. По мнению автора этих мыслей, именно порядковое число ведет к количественному, чем и объясняется значение считалок в развитии у детей числовых представлений. Осваивая порядок номеров домов, телефонов, дети познают принципы нумерации.
Согласно другой теории (Ж. Пиаже), освоение чисел происходит у ребенка в результате синтеза логических операций, таких как классификация и сериация. Число рассматривается как связанное не с конкретными предметными действиями, а с отвлеченными отношениями на уровне логических операций. К таким операциям относится, кроме классификации и сериации, принцип сохранения количества и величины. Освоению чисел предшествуют и сопутствуют упражнения в определении отношений соответствия (один к одному), порядка следования (что за чем следует), тождества (такой же, как , неизменности (или изменения) и т.д.
Новое в образовании:
Определение понятия «универсальные учебные действия»
В широком значении термин «универсальные учебные действия» (УУД) означает умение учиться, т.е. способность субъекта к саморазвитию и самосовершенствованию путем сознательного и активного присвоения нового социального опыта. В более узком, психологическом значении этот термин можно определить как со ...
Исследование роли маскулинности в формировании противоправного поведения
Проводилось исследование особенностей подростков с девиантным и недевиантным поведением с целью его выявления, определения его форм и возможностью дальнейшей коррекции. В процессе проведения эксперимента была сформулирована гипотеза: уровень маскулинности определяет склонность к противоправному пов ...
Суть метода координат
Немного из истории координатного метода. В настоящее время уже очень большое число специалистов из разных областей науки имеют представление о прямоугольных декартовых координатах на плоскости, так как эти координаты дают возможность наглядно при помощи графика изобразить зависимость одной величины ...