Проанализируем получившуюся картину. Круг, изображающий множество N натуральных чисел, разбился на 4 непересекающиеся области – они пронумерованы римскими цифрами. Каждая область изображает некоторое подмножество множества N . Определим, какие числа оказались в каждом из этих непересекающихся подмножеств. Подмножество I состоит из чисел, кратных 3 и 5; подмножество II – из чисел, кратных 3 и не кратным 5; подмножество III – из чисел, кратных 5 и не кратных 3; подмножество IV – из чисел, не кратных 3 и не кратных 5. Объединение этих четырех подмножеств есть множество N.
Для формирования умений по классификации и систематизации целесообразно на практических занятиях (или в качестве самостоятельной работы) предлагать упражнения на составление классификационных схем. Порядок составления таких схем предполагает схематическое изображение изученных в данной теме понятий на основе их родо - видовых отношений.
Классификационные схемы целесообразно составлять в конце изучения темы или раздела.
При изложении математики в школе часто приходится прибегать к классификации. В процессе классификации образуется система изучаемых понятий. Полезны классификации при повторении, так как при этом систематизируется изучаемый материал, ученики получают более полное представление о взаимосвязях между понятиями и о системе математических понятий. В процессе этой работы важно широко использовать таблицы, схемы, диаграммы, иллюстрирующие вопросы классификации и их применение при решении задач.
Применение приема классификация на уроках позволяет существенно расширить имеющиеся в практике приемы работы, способствуют формированию положительных мотивов в учебной деятельности, так как подобная работа содержит и элементы игры и элементы поисковой деятельности, что в свою очередь повышает активность учащихся и обеспечивает самостоятельное выполнение работ.
Новое в образовании:
Результаты мероприятий, проводимых в школе № 75 по здоровьесбережению школьников
Проблема здоровьесбережения, пожалуй, самая актуальная и требующая системного подхода в решении. Дети проводят в школе значительную часть дня, и сохранение, укрепление их физического, психического здоровья - дело не только семьи, но и педагогов. Здоровье человека - важный показатель его личного усп ...
Мультимедиа как средство обучения
Современное образование требует изменения подходов к обучению. Прежде всего, следует добиться максимальной активизации и визуализации обучения. Этому способствует применение различных технических средств, позволяющих сократить время изложения нужной информации и современные технологии в образовании ...
Девиантное поведение детей и подростков
Поведение некоторых детей и подростков обращает на себя внимание нарушением норм, несоответствием получаемым советам и рекомендациям, отличается от поведения тех, кто укладывается в нормативные требования семьи, школы и общества. Это поведение, характеризующееся отклонением от принятых нравственных ...