Методика введения понятий: функции, аргумента, области определения

Педагогика и воспитание » Методика изучения алгебраических функций в восьмилетней школе » Методика введения понятий: функции, аргумента, области определения

Страница 1

Не смотря на чрезвычайно большой объем, широту и сложность понятия функции, его простейший вариант дается уже в средних классах школы. Это понятие в дальнейшем играет важную роль, являясь базовым понятием в изучении алгебры и начал анализа. Начиная с 7 класса средней школы идет постепенное изучение свойств функций и функциональных зависимостей. Рассматриваются различные классы функций: начиная с простейших линейных функций и их графиков, затем следуют квадратичные функции, функции обратной пропорциональности и дробно-линейные функции. В более старших классах вводятся тригонометрические функции, и, наконец, показательные и логарифмические функции. Все эти функции рассматриваются только как функции одной переменной, причем сами переменные не выходят за рамки множества вещественных чисел. Scrap cars for cash near me top scrap scrap4cash.com.

В настоящее время, на волне педагогического поиска, стало появляться множество экспериментальных учебников для использования в школе. Наряду с добротными, толково написанными учебниками, в школы стала попадать, под предлогом апробации, масса учебников с довольно вольной трактовкой учебного материала, в том числе и глав, касающихся изучения функций. Часто нарушается логический порядок следования изучаемых разделов, допускаются ошибки при построении графиков, материал необоснованно упрощается, примитивизируется или наоборот, чрезмерно перегружается терминами и символикой.

Введение понятия функции — длительный процесс, завершающийся формированием представлений обо всех компонентах этого понятия в их взаимной связи и о роли, играемой им в математике и в ее приложениях. Этот процесс ведется по трем основным направлениям:

- упорядочение имеющихся представлений о функции, развертывание системы понятий, характерных для функциональной линии (способы задания и общие свойства функций, графическое истолкование области определения, области значений, возрастания и т. д. на основе метода координат);

- глубокое изучение отдельных функций и их классов;

- расширение области приложений алгебры за счет включения в нее идеи функции и разветвленной системы действий с функцией.

Первое из этих направлений проявляется в курсе школьной алгебры ранее остальных.

В реализации этого направления значительное место отводится усвоению важного представления, входящего в понятие функции,— однозначности соответствия аргумента и определенного по нему значения функции. Для рассмотрения этого вопроса привлекаются различные способы задания функции.

Чаще других в математике и ее приложениях применяется задание функции формулой. Все другие способы играют подчиненную роль. Именно поэтому после первого знакомства с несколькими такими способами основное внимание в обучении уделяется тем функциям и классам, которые имеют стандартную алгебраическую форму их выражения. Однако при введении понятия сопоставление разных способов задания функции выполняет важную роль. Во-первых, оно связано с практической потребностью: и таблицы, и графики, как правило, служат для удобного в определенных обстоятельствах представления функции, имеющей аналитическую форму записи. Во-вторых, оно важно для усвоения всего многообразия аспектов понятия функции. Формула выражает функцию лишь будучи включенной в соответствующую систему представлений и операций, а эта система такова, что различные компоненты понятия функции могут быть отображены наиболее естественно различными средствами.

Использование перевода задания функции из одной формы представления в другую — необходимый методический прием при введении понятия функции.

Реализация этого приема состоит в использовании системы заданий, в которых представлены все случаи такого перевода. Если ограничиться основными способами представления функции — формулой, графиком, таблицей, то получится 6 типов упражнений, при которых форма представления меняется, и 3 — при которых она остается такой же. Приведем примеры заданий первого типа — изменения формы представления:

а) Изобразить график функции у = 4х+1 на промежутке.

б) Проверить, насколько точна таблица квадратов чисел, взяв несколько значений для аргумента и проведя расчет: x=1,35; 2,44; 9,4; 7; 6,25.

в) На рисунке изображены точки на координатной плоскости, выражающие результаты наблюдений за атмосферным давлением.

Построить график зависимости давления от времени в промежутке 12≤t≤18, соединив эти точки плавной линией.

Страницы: 1 2 3

Новое в образовании:

Результаты исследования адаптации ребенка в коллективе на примере объединения дополнительного образования театральной студии «Шанс» Полянской школы-интерната
Всем известно, что любая работа оценивается, конечно же, прежде всего по видимому конкретному результату. Особенно это касается театральных занятий. Ведь их результат, как ни какой другой, виден наглядно на сцене. Никто не знает как проходят занятия в театральной студии, как протекает учебный и тре ...

Проблема развития творческих способностей личности
Вопросу что такое личность множество философов дают различные определения. Известный психолог, основоположник психоанализа, Зигмунд Фрейд отвергал идею об уникальности каждой человеческой личности, считая, что решающее значение в вопросе формирования личности принадлежит сексуальному фактору. Его у ...

Виды деятельности дошкольника
Главной и ведущей деятельностью дошкольного возраста является сюжетно-ролевая игра, т. е. деятельность, в которой дети берут на себя те или иные функции взрослых людей и в специально создаваемых ими игровых, воображаемых условиях воспроизводят (или моделируют) деятельность взрослых и отношения межд ...

НАВИГАЦИЯ

Copyright © 2022 - All Rights Reserved - www.eduinfluence.ru