Методика введения понятий: функции, аргумента, области определения

Педагогика и воспитание » Методика изучения алгебраических функций в восьмилетней школе » Методика введения понятий: функции, аргумента, области определения

Страница 2

Мы рассмотрим методику работы с этими заданиями только на этапе первоначального ознакомления с понятием функции, на других этапах она может быть совершенно иной. На рассмотренном этапе учащиеся еще не знают общего вида графика линейной функции (задание а)). Поэтому график функции у=4х+1 они могут построить только по точкам. Учитель может обратить внимание на то, что по точкам нельзя построить целиком график функции, если она определена на бесконечном множестве, но заметно, что эти точки лежат на прямой; оказывается, что это замечание верно. Таким образом, можно установить связи с дальнейшим изучением материала. Способ построения графика функции по точкам иллюстрируется заданием в); пользуясь конкретным содержанием задания, учитель может отметить, что предлагаемые учащимися графики могут отличаться от действительного положения, но что на практике этим приемом часто приходится пользоваться (интерполяция). В задании б) можно отметить связь функциональных представлений с числовой системой — с понятиями точного и приближенного числового значения. С их сопоставлением постоянно приходится сталкиваться при построении графиков, потому что наносить точки на график можно лишь с ограниченной точностью.

В настоящее время в изучении понятия функции в школе преобладающими являются два основных подхода: индуктивный и дедуктивный. Сложившись исторически, они наиболее полно отвечают целям и задачам образования, и поэтому именно им отдано предпочтение при изучении математики, в том числе функций, в средних классах школ.

Вот как, примерно, реализуется индуктивный подход к изучению понятия функции в 7 классе:

“На практике мы часто встречаемся с зависимостями между различными величинами. Например, площадь круга зависит от его радиуса, масса металлического бруска зависит от его объема и плотности металла, объем прямоугольного параллелепипеда зависит от его длины, ширины и высоты.

В дальнейшем мы будем изучать зависимость между двумя величинами.

Рассмотрим примеры.”

Далее следуют примеры призванные наглядно продемонстрировать только что изложенный материал.

Пример 2.

Площадь квадрата зависит от длины его стороны. Пусть сторона квадрата равна a см, а его площадь равна S см2.

Для каждого значения переменной a можно найти соответствующее значение переменной S.

Так,

если a = 3, то S = 32 = 9;

если a = 15, то S = 152 = 225;

если a = 0,4, то S = 0,42 = 0,16.

Зависимость переменной S от переменной a выражается формулой

S = a2

(по смыслу задачи a > 0).

Затем дается первое определение зависимой и независимой переменных:

“Переменную a, значения которой выбираются произвольно, называют независимой переменной, а переменную S, значения которой определяются выбранными значениями a, - зависимой переменной”.

Пример 3

. На рисунке изображен график температуры воздуха в течении суток.

Рис.2.1.График температуры воздуха в течении суток

С помощью этого графика для каждого момента времени t (в часах), где 0 Ј t Ј 24, можно найти соответствующую температуру p (в градусах Цельсия). Например,

если t = 6, то p = -2;

если t = 12, то p = 2;

если t = 17, то p = 3;

Здесь t является независимой переменной, а p - зависимой переменной.

Пример 4.

Стоимость проезда в пригородном поезде зависит от номера зоны, к которой относится станция. Эта зависимость показана в таблице (буквой n обозначен номер зоны, а буквой m - соответствующая стоимость проезда в рублях):

По этой таблице для каждого значения n, где n = 1, 2, ., 9, можно найти соответствующее значение m. Так,

если n = 2, то m = 1.5;

если n = 6, то m = 4 ;

если n = 9, то m = 8.5;

В этом случае n является независимой переменной, а m - зависимой переменной.”

Обилие примеров, призванных проиллюстрировать понятие функции, объясняется тем фактом, что, проводя аналогии между различными примерами, учащиеся интуитивно нащупывают суть этого понятия, строят догадку относительно функциональных зависимостей в быту и в природе, и получают ее подтверждение в последующих примерах. Второй не менее важной причиной является то, что каждый из этих примеров содержит функцию заданную одним из возможных способов. В первом примере она задана аналитически, во втором - графически, в третьем это таблица. Это не случайность, разбирая примеры вместе с учителем, дети сразу привыкают к различным способам задания функций. И когда преподаватель начнет рассказывать параграф о способах задания функций, ученикам будет гораздо легче осознать новый материал, потому что для них он не будет абсолютно новым - они уже сталкивались с этим ранее.

Страницы: 1 2 3

Новое в образовании:

Формирование экологических знаний и культуры при использовании экскурсии
Цель эксперимента: использовать на практике такую форму обучения как экскурсия при изучении естествознания. Для достижения этой цели нами были проведены в экспериментальной группе экскурсии по темам "Осенние изменения в жизни растений и животных" и "Природа зимой". В контрольной ...

Интерактивная доска как средство мультимедиа
Интерактивная доска – сенсорный экран, подсоединенный к компьютеру, изображение с которого передает на доску проектор. Достаточно только прикоснуться к поверхности доски, чтобы начать работу на компьютере. Специальное программное обеспечение позволяет работать с текстами и объектами, аудио- и видео ...

Развитие речевого аппарата
Второй год жизни является периодом становления и быстрого развития речи. С года до года и шести-восьми месяцев ребенок учится понимать речь, а во второй половине второго года жизни быстро увеличивается его словарный запас, совершенствуется его активная речь. Если для годовалого ребенка слова взросл ...

НАВИГАЦИЯ

Copyright © 2024 - All Rights Reserved - www.eduinfluence.ru