Суть метода координат

Страница 1

Немного из истории координатного метода.

В настоящее время уже очень большое число специалистов из разных областей науки имеют представление о прямоугольных декартовых координатах на плоскости, так как эти координаты дают возможность наглядно при помощи графика изобразить зависимость одной величины от другой. Название «декартовы координаты» наводит на ложную мысль о том, что эти координаты были открыты Декартом. В действительности прямоугольные координаты использовались в геометрии еще до нашей эры. Древний математик александрийской школы Аполлоний Пергский (живший в III-II веке до н. э.) уже фактически пользовался прямоугольными координатами. Он определял и изучал с их помощью хорошо известные в то время кривые: параболу, гиперболу и эллипс.

Аполлоний задавал их уравнениями: у2 =рх (парабола)

(гипербола)

(эллипс, где р и q положительны)

Он, конечно, не выписывал уравнения в этой геометрической форме, так как в те времена не существовало еще алгебраической символики, а описывал уравнения, пользуясь геометрическими понятиями; у2 в его терминологии есть площадь квадрата со стороной у; рх - площадь прямоугольника со сторонами р и х и т.д. С этими уравнениями связаны названия кривых. Парабола по-гречески обозначает равенство: квадрат имеет площадь у2 равную площади рх прямоугольника. Гипербола по-гречески обозначает избыток: площадь квадрата у2 превосходит площадь рх прямоугольника. Эллипс по-гречески обозначает недостаток: площадь квадрата меньше площади прямоугольника.

Декарт внес в прямоугольные координаты очень важное усовершенствование, введя правила выбора знаков. Но главное, пользуясь прямоугольными координатами, он построил аналитическую геометрию на плоскости, связав этим геометрию и алгебру. Нужно сказать, однако, что одновременно с Декартом построил аналитическую геометрию и другой французский математик, Ферма.

Значение аналитической геометрии состоит, прежде всего, в том, что она установила тесную связь между геометрией и алгеброй. Эти две ветви математики ко времени Декарта достигли уже высокой степени совершенства. Но развитие их в течение тысячелетий шло независимо друг от друга, и ко времени появления аналитической геометрии между ними намечалась лишь довольно слабая связь.

Координаты позволяют определять с помощью чисел положение любой точки пространства или плоскости. Это дает возможность «шифровать» различного рода фигуры, записывая их при помощи чисел. Соотношения между координатами чаще всего определяет не одну точку, а некоторое множество (совокупность) точек. Например, если отметить все точки, у которых абсцисса равна ординате, т. е. точки, координаты которых удовлетворяют уравнению х=у, то получится прямая линия - биссектрисы первого и третьего координатных углов.

Підпис: Рис.1Иногда, вместо «множество точек», говорят «геометрическое место точек». Например, геометрическое место точек, координаты которых удовлетворяют соотношению х=у - это, как было сказано выше, биссектрисы первого и третьего координатного угла. Установление связей между алгеброй, с одной стороны, и геометрией - с другой, было по существу, революцией в математике. Оно восстановило математику как единую науку, в которой нет «китайской стены» между отдельными ее частями.

Суть метода координат

Сущность метода координат как метода решения задач состоит в том, что, задавая фигуры уравнениями и выражая в координатах различные геометрические соотношения, мы можем решать геометрическую задачу средствами алгебры. Обратно, пользуясь координатами, можно истолковывать алгебраические и аналитические соотношения и факты геометрически и таким образом применять геометрию к решению алгебраических задач.

Страницы: 1 2

Новое в образовании:

Анализ формирования мышления в традиционном преподавании биологии
В современной школе используется три относительно обособленных и отличающихся рядом признаков вида обучения: Объяснительно-иллюстративное, называемое также традиционным, сообщающим или конвенциональным (обычным); Проблемное; Программированное и развившееся на его основе компьютерное обучение. Педаг ...

Психолого-педагогическая характеристика детей с умственной отсталостью
Рассмотрим психолого-педагогические особенности детей с умственной отсталостью. Л.С. Выготским было предложено отличать ядерные признаки от вторичных и третичных наслоений, нарастающих над этим ядром. Ядерным дефектом при умственной отсталости является тотальное поражение головного мозга. По мнению ...

Конфликты как психолого-педагогическая проблема
Понятие "конфликт" характеризуется исключительной широтой содержания и употребляется в разнообразных значениях. Самым общим образом конфликт можно определить как "предельное обострение противоречий". Психологи также подчеркивают, что такое трудно разрешимое противоречие связано ...

НАВИГАЦИЯ

Copyright © 2020 - All Rights Reserved - www.eduinfluence.ru