В “Дифференциальном исчислении”, вышедшем в свет в 1755 г, Л. Эйлер дает общее определение функции: “Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых”. “Это наименование, - продолжает далее Эйлер, - имеет чрезвычайно широкий характер; оно охватывает все способы, какими одно количество определяется с помощью других”. На основе этого определения Эйлера французский математик С. Ф. Лакруа в своем “Трактате по дифференциальному и интегральному исчислению”, опубликованном в 1797 г., смог записать следующее: “Всякое количество, значение которого зависит от одного или многих других количеств, называется функцией этих последних независимо от того, известно или нет, какие операции нужно применить, чтобы перейти от них к первому”.
Как видно из этих определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики в XIX в. вызвали и дальнейшее обобщение понятия функции.
Большой вклад в решение спора Эйлера, Даламбера, Д. Бернулли и других ученых XVIII в. по поводу того, что следует понимать под функцией, внес французский математик Жан Батист Жозеф Фурье (1768-1830), занимавшийся в основном математической физикой. В представленных им в Парижскую Академию наук в 1807 и 1811 гг., работах по теории распространения тепла в твердом теле Фурье привел и первые примеры функций, которые заданы на различных участках различными аналитическими выражениями.
Из трудов Фурье явствовало, что любая кривая независимо от того, из скольких и каких разнородных частей она составлена, может быть представлена в виде единого аналитического выражения и что имеются также прерывные кривые, изображаемые аналитическим выражением. В своем “Курсе алгебраического анализа”, опубликованном в 1821 г., французский математик О.Коши обосновал выводы Фурье. Таким образом, на известном этапе развития физики и математики стало ясно, что приходится пользоваться и такими функциями, для определения которых очень сложно или даже невозможно ограничиться одним лишь аналитическим аппаратом. Последний стал тормозить требуемое математикой и естествознанием расширение понятия функции.
В 1834 г. в работе “Об исчезании тригонометрических строк” Н. И. Лобачевский, развивая вышеупомянутое эйлеровское определение функции в 1755 г., писал: “Общее понятие требует, чтобы функцией от х называть число, которое дается для каждого х и вместе с х постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них; или, наконец, зависимость может существовать и оставаться неизвестной . Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа, одни с другими в связи, принимать как бы данными вместе”.
Еще до Лобачевского аналогичная точка зрения на понятие функции была высказана чешским математиком Б. Больцано. В 1837 г. немецкий математик П. Лежен-Дирихле так сформулировал общее определение понятия функции: “у есть функция переменной х (на отрезке a Ј х Ј b), если каждому значению х (на этом отрезке) соответствует совершенно определенное значение у, причем безразлично, каким образом установлено это соответствие - аналитической формулой, графиком, таблицей либо даже просто словами”.
Новое в образовании:
Понятие о ДЦП. Виды и формы ДЦП. Прогноз
Детский церебральный паралич (ДЦП) - тяжёлое мультифакториальное заболевание нервной системы, обусловленное вредоносными воздействиями на мозг в различные периоды внутриутробного развития ребёнка, во время родов и в первые недели жизни. Время воздействия вредоносных факторов определяет картину боле ...
Понятие «групповая работа»
Рассмотрим понятие групповой работы с трех позиций: a) Какие процессы должны протекать в группе? b) Какие элементы составляют совместную деятельность в группе? c) Какие идеи и представления обеспечивают групповую работу? а) Процессы. 1. Первым важнейшим шагом к групповой работе является самоопредел ...
Анализ работы по развитию творческого воображения в изобразительной
деятельности у детей с задержкой психического развития
Таблица 9. Анализ полученных результатов учащихся 2б класса по методике «Несуществующее животное» № п/п Имя учащегося Уровень творческого воображения 1 2 3 1. Тима М. 1 2. Игорь П. 1 3. Даяна Б. 2 4. Виталик С. 1 5. Дима Я. 1 6. Артем К. 1 Анализ результатов: 83,3% учащихся имеют I уровень; 16,6% у ...