Методические особенности преподавания элементов истории на уроках алгебры в 7 классе

Педагогика и воспитание » Исторические экскурсы в курсе алгебры 7 класса как средство развития познавательного интереса » Методические особенности преподавания элементов истории на уроках алгебры в 7 классе

Страница 8

7. Итог урока.

Анализ урока.

Тип урока - урок изучения нового материала. Цели и задачи урока: проверить знания, умения, навыки по теме "Координатная плоскость"; познакомить учащихся с линейным уравнением с двумя переменными и его графиком; развивать математическую речь, активность, внимание, навыки самостоятельности; воспитывать аккуратность, интерес к предмету. Цели и задачи урока решены. Использовался исторический экскурс об уравнениях. В качестве дополнительного домашнего задания учащимся была предложена самостоятельная работа. Исторический материал заинтересовал учащихся.

Пробный урок алгебры в 7 классе, МОУ "Кыласовская СОШ"

Тема: Линейная функция и ее график

Цели: - познакомить учащихся с линейной функцией и ее графиком;

развивать математическую речь, активность, внимание, навыки

самостоятельности;

воспитывать аккуратность, интерес к предмету.

Оборудование: портрет Пьера Ферма.

Ход урока:

1. Сообщение темы и целей урока.

2. Работа по теме урока.

Линейное уравнение с 2 переменными и всегда можно преобразовать к виду , где -числа (коэффициенты), причем .

Этот частный вид линейного уравнения будем называть линейной функцией.

-независимая переменная (или аргумент), -зависимая переменная.

Линейная функция - это специальный вид линейного уравнения с 2 переменными.

Графиком линейной функции является прямая.

3. Исторический экскурс о Пьере Ферма.

Пьер Ферма (1601-1665)

В истории математики Пьер Ферма занимает особое место. Он известен как автор "великой теоремы Ферма", которая чрезвычайно просто формулируется и которую до сих пор еще не удалось доказать.

Сумма квадратов двух целых чисел снова может быть квадратом целого числа. Например, 52+122=132. Теорема Ферма утверждает, что для более высоких степеней подобное невозможно, т.е. уравнение хn+yn=zn не имеет решений в целых числах ни при каких n > 2.

Сотни квалифицированных математиков и тысячи дилетантов в течение трехсот лет пытались доказать эту теорему. В 1993 году на страницах многих газет, не склонных писать о математике, промелькнула сенсационная новость: теорема наконец-то доказана! Но вскоре, как бывало уже не раз, в доказательстве обнаружилась ошибка.

Ферма вошел в славную когорту "обыкновенных гениев" начала XVII века, вместе с Декартом, Паскалем, Гюйгенсом… Но, справедливости ради, надо отметить, что именно его долгое время считали сильнейшим математиком века - вплоть до появления работ Ньютона и Лейбница.

Как и Декарт, Пьер Ферма родился на юге Франции, получил всестороннее образование - не только естественнонаучное, но и гуманитарное. Большую часть жизни он проработал юристом в парламенте города Тулузы. Хотя в то время математика уже была уважаемой наукой, но еще не считалась профессией.

Научных журналов тоже еще не существовало (первый из них появился в год смерти Ферма). Поэтому математики обменивались сведениями о своих достижениях в личной переписке. В истории науки вошло имя парижского священника Мерсенна, сыгравшего роль информационного центра для математиков разных стран. Сообщить о своем открытии Мерсенну означало опубликовать его для всей Европы.

В 1636 году Ферма отправил Мерсенну письмо, в котором изложил свой метод решения задач о максимуме и минимуме. Мерсенн переслал копию этого письма другим математикам, в том числе Декарту. Рассуждения Ферма, использующие бесконечно малые величины, показались Декарту недостаточно ясными, и он подверг работу младшего коллеги резкой критике. Так через две тысячи лет после работ Архимеда возобновились споры о законности действий с бесконечно малыми величинами, не утихавшие до XIX столетия.

Страницы: 3 4 5 6 7 8 9 10

Новое в образовании:

Алгоритм управленческих действий на основе функционального подхода по вопросу подготовки и проведения педагогического совета в дошкольном учреждении
Заместитель заведующей по основной деятельности на основе своих профессиональных функций осуществляет подготовку к педагогическому совету. Диагностико-аналитическая функция позволяет грамотно подготовить и организовать педагогический совет, организовать этап разработки и подготовки. Проективно-конс ...

Общеметодический подход к формированию математических понятий в школьной практике
В школьной практике многие учителя добиваются от учеников заучивания определений понятий и требуют знания их основных доказываемых свойств. Однако результаты такого обучения обычно незначительны. Это происходит потому, что большинство учащихся, применяя понятия, усвоенные в школе, опираются на мало ...

Методика изучения прямой и обратной пропорциональной зависимости
Введение понятий прямой и обратной пропорциональной зависимости является важным шагом на пути к введению понятия функциональной зависимости и в дальнейшем к изучению линейной и обратной функций. Используя на практике индуктивный подход и знания о пропорции, полученные учениками, преподаватель на не ...

НАВИГАЦИЯ

Copyright © 2020 - All Rights Reserved - www.eduinfluence.ru