Методическая система по формирования математических понятий: множества, величины, числа, алгебраических и геометрических понятий

Педагогика и воспитание » Роль умственного приема классификации в формировании математических понятий у младших школьников » Методическая система по формирования математических понятий: множества, величины, числа, алгебраических и геометрических понятий

Страница 10

Пример 2. Учитель предлагает быстро пересчитать тетради. Ученики считают по две тетради (старая мерка) и получают 15 пар, поэтому в пачке 15 - 2 = 30 (тетрадей).

Пример 3. Ученикам предлагается быстро измерить полоску и даются две мерки: в 1 дм и в 1 см Дети меряют сначала большой меркой и получают число 4. Так как 1 дм содержит 10 см (новая мерка 1 см), то вся полоска содержит 4 • 10 = 40 (см).

Пример 4. Задача. Сколько нужно плиток кафеля, чтобы обложить такую же стенку, которая изображена на рис. 31? Дети считают сначала рядами (1 ряд -старая мерка), а потом -сколько в ряду плиток (1 плитка - новая мерка). Всего плиток 4 • 9 = 36. •

Умножение на 1 можно объяснить так: пусть в примере 1 в кружке помещается ровно один стакан, тогда в банке будет 5 • 1 = 5 (стаканов).

Умножение на 0 можно объяснить на примерах, в которых новая мерка значительно больше старой мерки и измеряемой величины.

Нахождение результата вычитания основывается на следующем определении.

Определение. Разностью из натурального числа " а " натурального числа " b " называется такое натуральное число " с ", что а = b + с.

Таким образом, вычитание рассматривается как действие обратное сложению. Это позволяет находить результат вычитания не только путем отсчитывания по одному, но и используя зависимость между компонентами операции сложения: 5 - 2 = (5 - 1) -1 и 2 + П =5.

Нахождение результата деления основывается на следующем определении.

Определение. Частным от деления натурального числа " а" на натуральное неравное нулю число " b " называется такое натуральное число " с ", что а • b == с.

Так как деление есть операция обратная умножению, то для нахождения результата деления используется зависимость между компонентами операции умножения: 3 •П=6. На этом же основывается и составление таблиц вычитания и деления:

а) 2+3=5; 5 - 2=3; . б) 2 • 3 = 6; 6:2=3.

Деление с остатком в начальных классах основывается на следующем определении.

Определение. Делением натурального числа " а " на натуральное число «b» с остатком называется отыскание такого частного q и остатка г , что а = b • q + г, где г < b.

Согласно этому определению, наряду с записью, например, 23 : 5 = 4 (остаток 3), ученикам должна даваться и такая запись: 23 = 5 • 4 + 3. Это

позволяет разнообразить примеры на деление с остатком: П =5*4+3 (проверка деления с остатком); 23 = П • 4 + П; 23 == 5 • О + О. Ученик + О. Учеников должны знать не только порядковую структуру множества натуральных чисел, которая была приведена выше, но и алгебраическую структуру натуральных чисел. Приведем ее.

1. В множестве натуральных чисел всегда выполнима операция сложения.

2. В множестве натуральных чисел всегда выполнима операция умножения.

3. а + b = b + а (переместительное свойство сложения).

4. а • b = b • а (переместительное свойство умножения).

5. (а + b) +с = а + (b +с) (сочетательное свойство сложения).

6. (а • b) • с =а • (b • с) (сочетательное свойство умножения).

7. (а+b) • с =а *с+b *с (распределительное свойство умножения относительно сложения).

8. а + 0 = а.

9. а • 0 = 0.

10.а + 1 = а'.

11. а • 1= а.

Операции над многозначными числами основываются на позиционной системе счисления.

Определение. Счислением (нумерацией) называется совокупность способов устного наименования и письменного обозначения чисел.

Существуют непозиционные и позиционные системы счисления.

В непозипионной системе счисления каждый знак (цифра) служит для обозначения одного и того же числа. Примером непозиционной системы счисления является римская нумерация, которой широко пользуются в настоящее время. Например, XII - это 10 + 1 + 1 =12.

Страницы: 5 6 7 8 9 10 11

Новое в образовании:

Общее понятие об активном обучении
В настоящее время в системе технологического обеспечения образования (особенно в высшей школе) все чаще выделяют ряд способов активизации учебной деятельности, которые получили название методов активизации процесса обучения (МАПО). Однако более точным было бы назвать их системой способов и приемов ...

Методика введения понятий: функции, аргумента, области определения
Не смотря на чрезвычайно большой объем, широту и сложность понятия функции, его простейший вариант дается уже в средних классах школы. Это понятие в дальнейшем играет важную роль, являясь базовым понятием в изучении алгебры и начал анализа. Начиная с 7 класса средней школы идет постепенное изучение ...

Результаты исследования адаптации ребенка в коллективе на примере объединения дополнительного образования театральной студии «Шанс» Полянской школы-интерната
Всем известно, что любая работа оценивается, конечно же, прежде всего по видимому конкретному результату. Особенно это касается театральных занятий. Ведь их результат, как ни какой другой, виден наглядно на сцене. Никто не знает как проходят занятия в театральной студии, как протекает учебный и тре ...

НАВИГАЦИЯ

Copyright © 2020 - All Rights Reserved - www.eduinfluence.ru