Таким образом, существует два подхода к понятию натурального числа:
- теоретико-множественный (количественная теория) и аксиоматический (порядковая теория), которые тесно переплетаются в методике преподавания. Поэтому, чтобы избежать ошибок, учитель должен знать, какой из подходов лежит в основе изучения конкретного вопроса.
Теоретико-множественный подход к понятию натурального числа базируется на понятиях конечного множества и взаимно-однозначного соответствия. Приведем схему введения натуральных чисел.
1. Определение. Два конечных множества называются равночисленными, если между ними можно установить взаимно-однозначное соответствие.
2. Отношение "быть равночисленным" разбивает все конечные множества на классы эквивалентности.
3. Каждый класс эквивалентности характеризуется мощностью, поэтому каждому множеству данного класса приписывают как характеристику одно и то же натуральное число.
4. Мощность пустого множества принимается за натуральное число ноль.
Понятие "быть равночисленным" и умение разбивать конечные множества на классы эквивалентности формируется у детей в дочисловой период при изучении темы "Столько, больше, меньше". Покажем, как на основе практической деятельности учащихся можно сформировать понятия о натуральных числах от 0 до 10.
Пример 1. Тема урока "Число и цифра 3".
На одной полке наборного полотна два кружочка, на второй - три, третья полочка пустая (рис. 2.17). Учитель, показывая разные конечные множества, просит разложить их по полкам, т.е. предлагает выполнить классификацию.
Рис. 2.17
После этого задаются вопросы:
1. Одинаковые ли группы предметов на второй полке? - Нет.
2. Почему же вы их поставили на одну полку? - Количество предметов у них одинаковое.
Учитель делает вывод о том, что это свойство (количество элементов каждого множества данного класса) и есть число 3.
Затем учитель показывает написание цифры 3, т.е. значка, с помощью которого изображается число три.
Следующий этап урока - закрепление. Учитель предлагает найти в классной комнате множество, содержащее по три элемента; выполнить с помощью заданной мерки измерение длины отрезка или площади геометрической фигуры, В этом случае число выступает в новом качестве: оно выражает отношение одной величины к другой. Так, выполняя задание по измерению емкости банки с помощью кружки, ученики получают натуральное число как результат отношения одной емкости к другой. Такой подход приводит к расширению понятия о положительном числе, так как результатом измерения может быть натуральное число, дробное число (положительное рациональное), иррациональное число. Таким образом, рассматривая с первого класса натуральное число как результат измерения величин, ученики постигают причины возникновения любого положительного действительного числа, что очень важно для последующего обучения в школе.
Пример 2. Тема урока "Число нуль".
Учитель задает вопросы типа: "Сколько холодильников в классе?", "Сколько грузовых автомобилей в классе?", Дети отвечают, что этого ничего нет. Тогда учитель говорит, что это соответствует числу нуль и можно записать с помощью цифры 0.
Аксиоматический подход к понятию "натуральное число" базируется на следующих основных (неопределяемых) понятиях: "натуральное число" с выделенным числом "О" (или "I") и "непосредственно следовать за ,".
В целом ряде книг за выделенное число принимается число 1. На наш взгляд целесообразнее выделять число 0, так как методика его введения аналогична методике выделения любого однозначного натурального числа (см. примеры 1 и 2). Кроме того, легче вводить тогда использование линейки.
Новое в образовании:
Компетентностный подход к образованию
В настоящее время в образовании компетентностный подход провозглашается как одно из важных концептуальных положений обновления содержания образования. Ссылаясь на мировую образовательную практику, авторы стратегии модернизации утверждают, что понятие «ключевые компетентности» выступает в качестве ц ...
Фрагмент календарно-тематического плана занятий по дисциплине
«Конструирование и производство автотракторной техники»
Календарный план может составляться на курс, семестр – как удобнее преподавателю. Единой строго-обязательной формы не существует, поэтому педагог может выбирать ту, которая удобнее лично для него. Фрагмент календарно-тематического плана по дисциплине «КиПАТТ» представлен в таблице 2. Таблица 2. Фра ...
Значение подвижных игр для развития личности ребенка
Игра является основным видом деятельности дошкольника. Она выступает и как форма организации жизни детей в дошкольном учреждении, и как средство их разностороннего развития, и как метод обучения. Игре придается большое значение в социальном становлении личности ребенка, а игровые навыки рассматрива ...