Для проведения факультатива предлагается ряд более сложных нестандартных задач, при решении которых используется метод координат.
Задача 1. Два предприятия А и В производят продукцию с одной и той же ценой m за одно изделие. Однако автопарк, обслуживающий предприятие А, оснащен более современными и более мощными грузовыми автомобилями. В результате транспортные расходы на перевозку одного изделия составляют для предприятия А 10 р. на 1 км, а для предприятия В 20 р. на 1 км. Расстояние между предприятиями 300 км. Как территориально должен быть расположен рынок сбыта между двумя предприятиями для того, чтобы расходы потребителей при покупке изделий были минимальными. Самая актуальная информация рукав ацетилен пропан на сайте.
Решение:
Для решения данной задачи воспользуемся методом координат. Систему координат выберем так, чтобы ось Ох проходила через пункты А и В, а ось Оу через точку А. Пусть Р произвольная точка, s1 и s2 расстояния от точки до предприятий А и В (рис.17). Тогда А(0, 0), В(300, 0), Р(х, у).
При доставке груза из пункта А расходы равны m+10s1. При доставке груза из пункта В расходы равны m+20s2. Если для пункта Р выгоднее доставлять груз с предприятия А, то m+10s1< m+20s2, откуда s1<2s2, в обратном случае получим s1>2s2.
Таким образом, границей области для каждой точки, до которой расходы на перевозку груза из пунктов А и В равны, будет множество точек плоскости, удовлетворяющих уравнению
s1=2s2 (1)
Выразим s1 и 2s2 через координаты:
, .
Имея в виду (1), получим .
Это и есть уравнение окружности. Следовательно, для всех пунктов, попадающих во внутреннюю область круга, выгоднее привозить груз из пункта В, а для всех пунктов, попадающих во внешнюю часть круга, - из пункта А.
Задача 2. На плоскости даны точки А и В; найти геометрическое место точек М, удаленных от А в двое больше, чем от В.
Решение:
Выберем систему координат на плоскости так, чтобы начало координат попало в точку А, а положительная полуось абсцисс пошла по АВ. За единицу масштаба возьмем отрезок АВ. Точка А будет иметь координаты (0,0), точка В координаты (1,0). Координаты точки М обозначим через (х,у). Условие записывается в координатах так:
.
Мы получили уравнение искомого геометрического места точек. Чтобы понять, какое множество описывается этим уравнением, мы преобразуем его так, чтобы оно приняло знакомый нам вид. Возведя обе засти в квадрат, раскрывая скобки и приводя подобные члены, получаем равенство: Зх2-8х+4+Зу2=0.
Это равенство можно переписать так:
или так: . Это уравнение окружности с центром в точке (,0) и радиусом, равным . Это значит, что наше геометрическое место точек является окружностью.
Задача 3.Дан треугольник ABC; найти центр окружности, описанной около этого треугольника.
Решение:
Примем точку А за начало координат, ось абсцисс направим от А к В. Тогда точка В будет иметь координаты (с,0), где с - длинна отрезка АВ. Пусть точка С имеет координаты (q,h), а центр искомой окружности - (а,b). Радиус этой окружности обозначим через R. Запишем в координатах принадлежность точек А(0,0), В(с,0) и C(q,h) искомой окружности:
a2+b2=R2,
(c-a)2+b2=R2,
(q-a)2+(h-b)2=R2.
Каждое из этих условий выражает тот факт, что расстояние точек А(0,0), В(с,0), C(q,h) от центра окружности (а,b) равно радиусу. Эти условия легко получить, если записать уравнение искомой окружности (окружности с центром (а,b) и радиусом R), т. е. (x-a)2+(y-b)2=R2, а затем в это уравнение вместо х и у подставить координаты точек А, В и С, лежащих на этой окружности. Эта система трех уравнений с тремя неизвестными легко решается, и мы получаем:
, ,
.
Новое в образовании:
Приемы активизации познавательной деятельности
Помочь учащимся в полной мере проявить свои способности, развить инициативу, самостоятельность, творческий потенциал — одна из основных задач современной школы. Успешная реализация этой задачи во многом зависит от сформированности у учащихся познавательных интересов. Приемы активизации познавательн ...
Результаты опроса по проектированию инновационных процессов в системе ВПО
В данном параграфе мы представляем результаты педагогического эксперимента, в котором проводился мониторинг проектирования в образовательном процессе вузов России инновационных процессов. Анкета № 1 для преподавателей по организации образовательного процесса в вузе приведена в приложении 1. Опрашив ...
Исследование агрессивности по методике Басса – Дарки
На втором этапе проводилось исследование агрессивности у подростков по методике Басса – Дарки. Опросник предлагался подросткам, находящимся в следственном изоляторе, и подросткам обычной средней школы. После проведенного исследования полученные данные были обработаны и приведены в приложении в диаг ...