Решения этих задач были разобраны выше.
Несмотря на недостатки метода координат такие как наличие большого количества дополнительных формул, требующих запоминания, и отсутствие предпосылок развития творческих способностей учащихся, некоторые виды задач трудно решить без применения данного метода. Поэтому изучение метода координат необходимо, однако более детальное знакомство с этим методом целесообразно проводить на факультативных занятиях. Далее приведем ряд задач для факультативов. https://neironvps.com/
Пример 1. Докажите, что сумма квадратов расстояний от точки, взятой на диаметре окружности, до концов любой из параллельных ему хорд постоянна.
Решение:
Введем прямоугольную систему координат с началом в центре окружности. Пусть хорда МР параллельна оси Ох, а точка А принадлежит диаметру (рис. 11). Обозначим расстояние ОА через а, а расстояние от точки Р до оси Ох через b. Тогда точка А имеет координаты (а, 0). Точки Р и М принадлежат окружности с центром в начале координат и радиусом равным 1, следовательно их координаты удовлетворяют уравнению данной окружности
. Используя это уравнение находим координаты точек Р(
) и М(
). Необходимо доказать, что АМ2+АР2 не зависит от переменной b. Найдем АМ2 и АР2 используя формулу нахождения расстояния между двумя точками по их координатам:
. Они соответственно равны
и
, а их сумма после приведения подобных равна 2а2+2. Это число не зависит от переменной b, что и требовалось доказать.
Пример 2. Доказать, что сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей. (Теорема Эйлера)
Решение: Введем прямоугольную систему координат как показано на рисунке 12.
Пусть точки А, В, С и D имеют координаты (0,0), (d,0), (c,d) и (0,d) соответственно. Следовательно, координаты точек L и P есть (
) и (
). Найдем квадраты длин отрезков, с помощью формулы нахождения расстояния между точками по их координатам.
AD2=
; BC2=
; DC2=
; AB2=
;
AC2=
; BD2=
; LP2=
.
Запишем выражение, которое необходимо доказать, используя найденные нами значения.
AD2+BC2+DC2+AB2=AC2+BD2+4LP2

+
+
+
=
+
+4
Раскроем скобки, приведем подобные и получим верное равенство 0=0. Значит, сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей.
Пример 3. Диаметры AB и CD окружности перпендикулярны. Хорда ЕА пересекает диаметр СD в точке К, хорда ЕС пересекает диаметр АВ в точке L. Докажите, что если СК:KD так же как 2:1, то AL:LB так же как 3:1.
Решение: Введем прямоугольную систему координат, направив оси по данным диаметрам AB и CD (рис. 13).
Радиус окружности будем считать равным 1. Тогда точки А, В, С, D будут иметь координаты (-1,0), (1,0), (0,-1), (0,1) соответственно. Так как СК:KD=2:1, то точка К имеет координаты (0,
). Найдем координаты точки Е как точки пересечения прямой АК, имеющей уравнение
и окружности, заданной уравнением
. Получаем, что точка Е имеет координаты (
). Точка L – это точка пересечения прямых СЕ и оси абсцисс, значит ординаты точки L равна 0.
Новое в образовании:
Дидактический материал, позволяющий знакомить детей с дробями
1. Математическая пирамида "Сложение" (серия "Дроби"). В серию «Дроби» входят две пирамиды для наглядного изучения долей целого числа и тренировки навыков сложения дробей. В наборе "Доли целого" дробь изображается как часть прямоугольного, или круглого, торта. Пирамиду ...
Опытно-экспериментальная работа по организации групповойработы
На первом этапе (констатирующем) было необходимо установить уровень взаимодействия учащихся в группе, определить роль каждого ученика. Для достижения поставленной цели были использованы следующие методы: наблюдения за учениками при работе в группе; беседа с учащимися. Экспериментальное исследование ...
Процесс воспитания как система
Основой процесса воспитания является деятельность ученика как субъекта в разных видах и формах. Генетически исходной является внешняя, предметная деятельность, которая порождает все виды внутренней психической деятельности. Общую психологическую структуру деятельности характеризуют действия и опера ...