Методические основы обучения координатному методу

Педагогика и воспитание » Изучение метода координат в курсе геометрии основной школы » Методические основы обучения координатному методу

Страница 5

Решения этих задач были разобраны выше.

Несмотря на недостатки метода координат такие как наличие большого количества дополнительных формул, требующих запоминания, и отсутствие предпосылок развития творческих способностей учащихся, некоторые виды задач трудно решить без применения данного метода. Поэтому изучение метода координат необходимо, однако более детальное знакомство с этим методом целесообразно проводить на факультативных занятиях. Далее приведем ряд задач для факультативов. https://neironvps.com/

Пример 1. Докажите, что сумма квадратов расстояний от точки, взятой на диаметре окружности, до концов любой из параллельных ему хорд постоянна.

Решение:

Введем прямоугольную систему координат с началом в центре окружности. Пусть хорда МР параллельна оси Ох, а точка А принадлежит диаметру (рис. 11). Обозначим расстояние ОА через а, а расстояние от точки Р до оси Ох через b. Тогда точка А имеет координаты (а, 0). Точки Р и М принадлежат окружности с центром в начале координат и радиусом равным 1, следовательно их координаты удовлетворяют уравнению данной окружности . Используя это уравнение находим координаты точек Р() и М(). Необходимо доказать, что АМ2+АР2 не зависит от переменной b. Найдем АМ2 и АР2 используя формулу нахождения расстояния между двумя точками по их координатам: . Они соответственно равны и , а их сумма после приведения подобных равна 2а2+2. Это число не зависит от переменной b, что и требовалось доказать.

Пример 2. Доказать, что сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей. (Теорема Эйлера)

Решение: Введем прямоугольную систему координат как показано на рисунке 12.

Пусть точки А, В, С и D имеют координаты (0,0), (d,0), (c,d) и (0,d) соответственно. Следовательно, координаты точек L и P есть () и (). Найдем квадраты длин отрезков, с помощью формулы нахождения расстояния между точками по их координатам.

AD2=; BC2=; DC2=; AB2=;

AC2=; BD2=; LP2=.

Запишем выражение, которое необходимо доказать, используя найденные нами значения.

AD2+BC2+DC2+AB2=AC2+BD2+4LP2

+++=++4

Раскроем скобки, приведем подобные и получим верное равенство 0=0. Значит, сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей.

Пример 3. Диаметры AB и CD окружности перпендикулярны. Хорда ЕА пересекает диаметр СD в точке К, хорда ЕС пересекает диаметр АВ в точке L. Докажите, что если СК:KD так же как 2:1, то AL:LB так же как 3:1.

Решение: Введем прямоугольную систему координат, направив оси по данным диаметрам AB и CD (рис. 13).

Радиус окружности будем считать равным 1. Тогда точки А, В, С, D будут иметь координаты (-1,0), (1,0), (0,-1), (0,1) соответственно. Так как СК:KD=2:1, то точка К имеет координаты (0,). Найдем координаты точки Е как точки пересечения прямой АК, имеющей уравнение и окружности, заданной уравнением . Получаем, что точка Е имеет координаты (). Точка L – это точка пересечения прямых СЕ и оси абсцисс, значит ординаты точки L равна 0.

Страницы: 1 2 3 4 5 6 7 8 9

Новое в образовании:

Эволюция как основное теоретическое обобщение в биологии
Идея историчности развития, идея эволюции принадлежит к числу немногих фундаментальных идей не только естествознания, но и всех наук. Но именно в биологии эволюционная идея, доказанная Ч. Дарвином, стала краеугольной, отсюда пошло распространение ее в другие дисциплины, вплоть до языкознания, здесь ...

Преодоление общего недоразвития описательной речи у детей старше дошкольного возраста
Специальные исследования детей с ОНОР показали клиническое разнообразие проявлений общего недоразвития описательной речи. Схематично их можно разделить на три основные группы. У детей первой группы имеют место признаки лишь общего недоразвития описательной речи, без других выраженных нарушений нерв ...

Индивидуализация и дифференциация воспитания
Новые ориентации и ценности современного образования обусловили необходимость понимать ученика как индивидуальную действительность и как индивидуальную возможность. Индивидуальным в человеке называют то особенное, что выделяет ее среди других людей, а индивидуальностью - ярко выраженную совокупност ...

НАВИГАЦИЯ

Copyright © 2025 - All Rights Reserved - www.eduinfluence.ru