Методические основы обучения координатному методу

Педагогика и воспитание » Изучение метода координат в курсе геометрии основной школы » Методические основы обучения координатному методу

Страница 3

задачи на оптимальный выбор системы координат;

задачи на составление уравнения фигуры по ее характеристическому свойству;

задачи на определение фигуры по ее уравнению;

задачи на преобразование алгебраических равенств;

Приведем примеры таких задач. BBUS. Выгодная аренда микроавтобуса с водителем на любой срок.

I. Построение точек на плоскости.

С координатной прямой, а затем и с координатной плоскостью учащиеся знакомятся в 5-6 классах при изучении математического материала. При этом удобно использовать мультимедийные презентации, которые позволяют в динамике излагать необходимый материал, использовать всевозможные иллюстрации и звуковые эффекты, тем самым, заинтересовывая учащихся и являясь хорошим наглядным средством. Одним из примеров является презентация «Метод координат», опирающаяся на учебник. Приведем несколько примеров задач, которые можно использовать при изучении координатной плоскости. Эти задачи могут быть использованы:

для оттачивания навыков построения точек по их координатам со всем классом;

для дополнительных заданий отстающим ученикам;

для развития интереса к изучаемой теме.

На координатной плоскости постройте точки А(7,2), B(-2,1), C(0,2).

Отметьте на плоскости несколько точек. Начертите произвольную систему координат и найдите в ней координаты заданных точек.

Постройте фигуры по координатам их узловых точек. Указание: узловыми будем называть точки, служащие концами отрезков, образующих фигуры. Точки, координаты которых записаны подряд через запятую, соединяйте последовательно друг с другом. Если же координаты разделяются знаком «;», то соответствующие точки не следует соединять. Они нужны для изображения вспомогательных элементов.

А) Камбала (Рис. 4)

(3,7), (1,5), (2,4), (4,3),

(5,2), (6,2), (8,4), (8,-1),

(6,0), (0,-3),(2,-6),(-2,-3),

(-4,-2),(-5,-1),(-6,1),(-4,1);

(-6,1), (-6,2), (-3,5), (3,7);

(-4,-2),(-2,0),(-2,2),(-3,5);(-3,3).

Б)Найдите координаты выделенных на рисунке точек, двигаясь по часовой стрелке от самой жирной точки. (Рис. 5 и 6)

II.Задачи на выбор системы координат

Выбор системы координат имеет очень важное значение при применении метода координат.

Для примера возьмем задачу, которая рассмотрена в учебнике «Середина гипотенузы прямоугольного треугольника равноудалена от его вершин».

Первым шагом при применении метода координат является такой выбор осей и системы координат, при котором алгебраические выкладки становятся более простыми. Для данной задачи удачный выбор системы координат показан на рисунке 7. Таким образом, начало координат помещаем в точку А, а оси проводим через точки В и С так, чтобы эти точки лежали на положительных лучах осей. Следовательно, В(а,0) и С(0,b). Поэтому по формуле середины отрезка D(). Теперь , .

Поэтому AD=BD. А так как по определению середины отрезка BC=CD, то теорема доказана.

Можно выбрать систему координат и по-другому (рис.8, рис.9). Если выбрать оси совсем случайно, то легкую задачу можно превратить в очень трудную. Чтобы начать доказательство исходя из рисунка 10, нужно найти способ, позволяющий выразить алгебраически, что треугольник ABC имеет при вершине А прямой угол. Сделать это можно, но будет это не очень просто.

Підпис: C(c,d)

Поэтому необходимо вырабатывать у учащихся, начиная с 6 класса, представления о возможности произвольного выбора системы координат. Эту работу целесообразно вести в процессе решения задач. В целях пропедевтической работы можно рекомендовать в 6 классе задачи из учебника на нахождение координат точек по рисунку, разнообразя их с помощью изменения направления осей и начала координат. (см. приложение1)

Страницы: 1 2 3 4 5 6 7 8

Новое в образовании:

Суть метода координат
Немного из истории координатного метода. В настоящее время уже очень большое число специалистов из разных областей науки имеют представление о прямоугольных декартовых координатах на плоскости, так как эти координаты дают возможность наглядно при помощи графика изобразить зависимость одной величины ...

Программа диагностики формирования коммуникативных универсальных учебных действий
Мы построили программу исследования на основе методик под названием «типовые задачи» предложенные ведущими отечественными учеными А.Г.Асмолов, Г.В. Бурменская, И.А. Володарская. Также для доказательства гипотезы учащиеся были распределены на экспериментальную группу 48 детей (1»а», 1»б») и контроль ...

Нарушение звукопроизношения
Очень часто возникают противоречия между неврологами и логопедами по поводу дизартрии. Если невролог не видит явных нарушений в функции черепно-мозговых нервов, он не может назвать нарушение речи дизартрией. Данный вопрос является, чуть ли не камнем преткновения между неврологами и логопедами. Это ...

НАВИГАЦИЯ

Copyright © 2025 - All Rights Reserved - www.eduinfluence.ru