-Как получить график функции у=0,1х² из графика функции у= х²?
-укажите общее свойство графиков функций у= а₁х² и у= а₂х², если а₁> 0, а₂< 0. Каково взаимное расположение обоих графиков, если а₁ и а₂ - противоположные числа?
III Параллельный перенос вдоль оси Ох вводится через сравнение таблиц значений функций у=2х²и у=2(х+3)².
|
х |
-3 |
-2 |
-1 |
0 |
1 |
2 |
3 |
|
у= 2х² |
18 |
8 |
2 |
0 |
2 |
8 |
18 |
|
у= 2(х+3)² |
0 |
2 |
8 |
18 |
32 |
50 |
72 |
Заметим, что третья строка таблицы получается из ее второй строки сдвигом влево на 3 клетки.
Если точка (х;у) принадлежит графику функции у= 2х², то точка (х-3; у) принадлежит графику функции у= 2(х+3)².
Точка (х-3; у) получается из точки (х;у) сдвигом влево на 3 единицы параллельно оси абсцисс.
Другими словами, весь график функции у= 2(х+3)² получается сдвигом графика функции у= 2х² параллельно оси абсцисс влево на 3 единицы.
Аналогично, рассуждая, приходим к выводу, что график функции у=
х(-2)² получается из графика функции у=
х² сдвигом параллельно оси абсцисс вправо на 2 единицы.
Точно так же можем получить более общий факт:
График функции у= а(х+р)² получается из графика функции у= ах² сдвигом параллельно оси абсцисс на р единиц влево при р>0 и на IpI единиц вправо при p<0.
IV Параллельный перенос вдоль оси Оу.
Чтобы получить значение функции y=f(x)+q в точке х, надо к значению функции y=f(x) в этой точке прибавить число q. При этом точка графика y=f(x) поднимется на q единиц вверх, если q>0, или опуститься на IqI единиц вниз, если q<0.
Т.о., график функции у= а(х+р)²+q получается из графика функции у= а(х+р)² сдвигом параллельно оси ординат на q единиц вверх, если q>0, и на IqI единиц вниз, если q<0.
Здесь же авторы предлагают алгоритм построения графика произвольной квадратичной функции:
у= ах ²+вх+с= а(х+
)²+
= а(х+р)²+q, р=-
; q=
Новое в образовании:
Инновационная деятельность педагога дополнительного образования
Инновации в образовании. Нововведения, или инновации, характерны для любой профессиональной деятельности человека и поэтому естественно становятся предметом изучения, анализа и внедрения. Инновации сами по себе не возникают, они являются результатом научных поисков, передового педагогического опыта ...
Характеристика и классификация общеразвивающих упражнений
Для общеразвивающих упражнений характерно, что в каждом из них согласуется динамическая работа одних мышц и статическая нагрузка на другие. Этим обеспечивается избирательность воздействия на конкретные части тела. Упражнения состоят из элементов, которые могут выполняться отдельно. Поэтому можно пр ...
Современное рабочее место преподавателя на примере кабинета физики
Пример организации рабочего места преподавателя физики в современной школе - полный комплекс ТСО - это качественно новая модель совокупности средств информационных технологий учебного назначения, сочетающих в себе воедино демонстрационные средства, средства индивидуальной работы учащихся и техничес ...