Анализ учебников

Страница 12

Построим график функции у= 2(х+1)²-3.

построим параболу у= 2х²;

перенесем ее на 1 единицу влево – получим график функции у= 2(х+1)²;

сдвинем этот график на 3 единицы вниз, получим график функции у= 2(х+1)²-3.

Последовательность построения можно записать в виде схемы:

При формулировки следующего правила, авторы используют термин «параллельный перенос».

График функции, заданной формулой вида у= а(х+р)²+q, можно получить из параболы у=ах² с помощью двух параллельных переносов:

- вдоль оси х на IрI единиц – влево или вправо в зависимости от знака числа р;

- вдоль оси у на IqI единиц - вверх или вниз в зависимости от знака числа q.

Вершиной параболы у= а(х+р)²+q будет точка (-р;q).

Система упражнений разнообразна как в уровне А, так и в уровне Б, отражает теоретический материал в следующих заданиях:

задайте функцию формулой и схематически изобразите график функции, если известно, что ее график получен сдвигом вдоль оси у:

а) параболы у= 2х² на 4 единицы вверх;

б) параболы у=х² на 5 единиц вниз;

задайте формулой параболу, изображенную на рисунке, если известно, что она получена сдвигом вдоль оси у параболы:

а) у= х²; б) у= х²; в) у= -2х²; г) у= -х².

постройте график функции:

а) у= х²-1; в) у= х²-2; д) у= (х+2)²+1; ж) у= х²-2х+3;

б) у= -х²+9; г) у= -х²+8; е) у= (х-4)²+1; з) у= х²+6х+8.

изобразите схематически график функции и задайте эту функцию формулой, если известно, что ее график получен сдвигом вдоль оси х:

а) параболы у= 2х² на 3 единицы влево;

б) параболы у= х² на 6 единиц вправо.

При построении графика функции у= ах² +вх+с авторы предлагают учащимся на выбор два способа:

построение с использованием изученных преобразований;

построение с помощью вычисления координаты вершины параболы по формулам и нахождения дополнительных точек.

Мы видим, что теоретический материал изложен в достаточно понятной форме, с учетом возрастных особенностей учащихся, подробно рассмотрены примеры, большая и разнообразная практическая база.

«Алгебра» автор А.Г. Мордкович

Данный учебно-методический комплект состоит из следующих составляющих:

учебника;

задачника;

рабочей тетради;

сборника контрольных работ;

сборника тестов;

методических рекомендаций учителю.

Этот учебный комплект продолжает единую содержательную линию обучения по учебнику «Математика 5-6» Зубарева И.И., Мордкович А.Г.

Данный комплект рекомендован (допущен) Министерством образования РФ к использованию в образовательном процессе в общеобразовательных учреждениях на 2004/05 учебный год.

Страницы: 7 8 9 10 11 12 13 14 15 16 17

Новое в образовании:

Любовь как этический принцип педагогики
Многих из нас не так давно заинтересовал вопрос: «Почему дети разных стран одинаково любят книги про Гарри Поттера?» Как всякий проект массовой культуры, сопровождаемый агрессивной рекламой, романы Джоан Ролинг встречают неприятие. Но для того, чтобы оценить этический заряд этих книг, нужно попробо ...

Социально-психологическое сопровождение педагогического коллектива
Учебное заведение профессионального образования призвано создать обучающимся (студентам) возможности продуктивного решения центральных задач возраста и психологически грамотно ввести их в смыслы, назначения, ценности, содержание деятельности, особенности её освоения и реализации, обеспечить превращ ...

Истоки декоративно – прикладного искусства
Декоративное искусство зародилось при родовом строе, когда человек украшался браслетами, кольцами. Позднее появились предметы украшения одежды, затем жилья. Искусство создавать такие вещи стали называть декоративным («декор» от франц. – «украшение»). Издавна из дерева возводили дома, изготовляли ут ...

НАВИГАЦИЯ

Copyright © 2025 - All Rights Reserved - www.eduinfluence.ru